


MODERN

OPERATING SYSTEMS

FOURTH EDITION



Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Android and Google Web Search are trademarks of Google Inc.

Apple and Apple Macintosh are registered trademarkes of Apple Inc.

ASM, DESPOOL, DDT, LINK-80, MAC, MP/M, PL/1-80 and SID are trademarks of Digital
Research.

BlackBerry®, RIM®, Research In Motion® and related trademarks, names and logos are the
property of Research In Motion Limited and are registered and/or used in the U.S. and coun-
tries around the world.

Blu-ray Disc™ is a trademark owned by Blu-ray Disc Association.

CD Compact Disk is a trademark of Phillips.

CDC 6600 is a trademark of Control Data Corporation.

CP/M and CP/NET are registered trademarks of Digital Research.

DEC and PDP are registered trademarks of Digital Equipment Corporation.

eCosCentric is the owner of the eCos Trademark and eCos Logo, in the US and other countries. The
marks were acquired from the Free Software Foundation on 26th February 2007. The Trademark and
Logo were previously owned by Red Hat.

The GNOME logo and GNOME name are registered trademarks or trademarks of GNOME Foundation
in the United States or other countries.

Firefox® and Firefox® OS are registered trademarks of the Mozilla Foundation.

Fortran is a trademark of IBM Corp.

FreeBSD is a registered trademark of the FreeBSD Foundation.

GE 645 is a trademark of General Electric Corporation.

Intel Core is a trademark of Intel Corporation in the U.S. and/or other countries.

Java is a trademark of Sun Microsystems, Inc., and refers to Sun’s Java programming language.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

MS-DOS and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.

TI Silent 700 is a trademark of Texas Instruments Incorporated.

UNIX is a registered trademark of The Open Group.

Zilog and Z80 are registered trademarks of Zilog, Inc.



MODERN

OPERATING SYSTEMS

FOURTH EDITION

ANDREW S. TANENBAUM
HERBERT BOS

Vrije Universiteit
Amsterdam, The Netherlands

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo



Vice President and Editorial Director, ECS:Marcia Horton
Executive Editor: Tracy Johnson
Program Management Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Camille Trentacoste
Operations Specialist: Linda Sager
Cover Design: Black Horse Designs
Cover art: Jason Consalvo
Media Project Manager: Renata Butera

Copyright © 2015, 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458,
Pearson Prentice-Hall. All rights reserved. Printed in the United States of America. This publication
is protected by Copyright and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
Pearson® is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Library of Congress Cataloging-in-Publication Data
On file

ISBN-10: 0-13-359162-X
ISBN-13: 978-0-13-359162-0



To Suzanne, Barbara, Daniel, Aron, Nathan, Marvin, Matilde, and Olivia.
The list keeps growing. (AST)

To Marieke, Duko, Jip, and Spot. Fearsome Jedi, all. (HB)



This page intentionally left blank 



CONTENTS

PREFACE xxiii

1 INTRODUCTION 1

1.1 WHAT IS AN OPERATING SYSTEM? 3
1.1.1 The Operating System as an Extended Machine 4
1.1.2 The Operating System as a Resource Manager 5

1.2 HISTORY OF OPERATING SYSTEMS 6
1.2.1 The First Generation (1945–55): Vacuum Tubes 7
1.2.2 The Second Generation (1955–65): Transistors and Batch Systems 8
1.2.3 The Third Generation (1965–1980): ICs and Multiprogramming 9
1.2.4 The Fourth Generation (1980–Present): Personal Computers 14
1.2.5 The Fifth Generation (1990–Present): Mobile Computers 19

1.3 COMPUTER HARDWARE REVIEW 20
1.3.1 Processors 21
1.3.2 Memory 24
1.3.3 Disks 27
1.3.4 I/O Devices 28
1.3.5 Buses 31
1.3.6 Booting the Computer 34

vii



viii CONTENTS

1.4 THE OPERATING SYSTEM ZOO 35
1.4.1 Mainframe Operating Systems 35
1.4.2 Server Operating Systems 35
1.4.3 Multiprocessor Operating Systems 36
1.4.4 Personal Computer Operating Systems 36
1.4.5 Handheld Computer Operating Systems 36
1.4.6 Embedded Operating Systems 36
1.4.7 Sensor-Node Operating Systems 37
1.4.8 Real-Time Operating Systems 37
1.4.9 Smart Card Operating Systems 38

1.5 OPERATING SYSTEM CONCEPTS 38
1.5.1 Processes 39
1.5.2 Address Spaces 41
1.5.3 Files 41
1.5.4 Input/Output 45
1.5.5 Protection 45
1.5.6 The Shell 45
1.5.7 Ontogeny Recapitulates Phylogeny 46

1.6 SYSTEM CALLS 50
1.6.1 System Calls for Process Management 53
1.6.2 System Calls for File Management 56
1.6.3 System Calls for Directory Management 57
1.6.4 Miscellaneous System Calls 59
1.6.5 The Windows Win32 API 60

1.7 OPERATING SYSTEM STRUCTURE 62
1.7.1 Monolithic Systems 62
1.7.2 Layered Systems 63
1.7.3 Microkernels 65
1.7.4 Client-Server Model 68
1.7.5 Virtual Machines 68
1.7.6 Exokernels 72

1.8 THE WORLD ACCORDING TO C  73
1.8.1 The C Language 73
1.8.2 Header Files 74
1.8.3 Large Programming Projects 75
1.8.4 The Model of Run Time 76



CONTENTS ix

1.9 RESEARCH ON OPERATING SYSTEMS 77

1.10 OUTLINE OF THE REST OF THIS BOOK 78

1.11 METRIC UNITS 79

1.12 SUMMARY 80

2 PROCESSES AND THREADS 85

2.1 PROCESSES 85
2.1.1 The Process Model 86
2.1.2 Process Creation 88
2.1.3 Process Termination 90
2.1.4 Process Hierarchies 91
2.1.5 Process States 92
2.1.6 Implementation of Processes 94
2.1.7 Modeling Multiprogramming 95

2.2 THREADS 97
2.2.1 Thread Usage 97
2.2.2 The Classical Thread Model 102
2.2.3 POSIX Threads 106
2.2.4 Implementing Threads in User Space 108
2.2.5 Implementing Threads in the Kernel 111
2.2.6 Hybrid Implementations 112
2.2.7 Scheduler Activations 113
2.2.8 Pop-Up Threads 114
2.2.9 Making Single-Threaded Code Multithreaded 115

2.3 INTERPROCESS COMMUNICATION 119
2.3.1 Race Conditions 119
2.3.2 Critical Regions 121
2.3.3 Mutual Exclusion with Busy Waiting 121
2.3.4 Sleep and Wakeup 127
2.3.5 Semaphores 130
2.3.6 Mutexes 132



x CONTENTS

2.3.7 Monitors 137
2.3.8 Message Passing 144
2.3.9 Barriers 146
2.3.10 Avoiding Locks: Read-Copy-Update 148

2.4 SCHEDULING 148
2.4.1 Introduction to Scheduling 149
2.4.2 Scheduling in Batch Systems 156
2.4.3 Scheduling in Interactive Systems 158
2.4.4 Scheduling in Real-Time Systems 164
2.4.5 Policy Versus Mechanism 165
2.4.6 Thread Scheduling 165

2.5 CLASSICAL IPC PROBLEMS 167
2.5.1 The Dining Philosophers Problem 167
2.5.2 The Readers and Writers Problem 169

2.6 RESEARCH ON PROCESSES AND THREADS 172

2.7 SUMMARY 173

3 MEMORY MANAGEMENT 181

3.1 NO MEMORY ABSTRACTION 182

3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 185
3.2.1 The Notion of an Address Space 185
3.2.2 Swapping 187
3.2.3 Managing Free Memory 190

3.3 VIRTUAL MEMORY 194
3.3.1 Paging 195
3.3.2 Page Tables 198
3.3.3 Speeding Up Paging 201
3.3.4 Page Tables for Large Memories 205



CONTENTS xi

3.4 PAGE REPLACEMENT ALGORITHMS 209
3.4.1 The Optimal Page Replacement Algorithm 209
3.4.2 The Not Recently Used Page Replacement Algorithm 210
3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 211
3.4.4 The Second-Chance Page Replacement Algorithm 211
3.4.5 The Clock Page Replacement Algorithm 212
3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 213
3.4.7 Simulating LRU in Software 214
3.4.8 The Working Set Page Replacement Algorithm 215
3.4.9 The WSClock Page Replacement Algorithm 219
3.4.10 Summary of Page Replacement Algorithms 221

3.5 DESIGN ISSUES FOR PAGING SYSTEMS 222
3.5.1 Local versus Global Allocation Policies 222
3.5.2 Load Control 225
3.5.3 Page Size 225
3.5.4 Separate Instruction and Data Spaces 227
3.5.5 Shared Pages 228
3.5.6 Shared Libraries 229
3.5.7 Mapped Files 231
3.5.8 Cleaning Policy 232
3.5.9 Virtual Memory Interface 232

3.6 IMPLEMENTATION ISSUES 233
3.6.1 Operating System Involvement with Paging 233
3.6.2 Page Fault Handling 234
3.6.3 Instruction Backup 235
3.6.4 Locking Pages in Memory 236
3.6.5 Backing Store 237
3.6.6 Separation of Policy and Mechanism 239

3.7 SEGMENTATION 240
3.7.1 Implementation of Pure Segmentation 243
3.7.2 Segmentation with Paging: MULTICS 243
3.7.3 Segmentation with Paging: The Intel x86 247

3.8 RESEARCH ON MEMORY MANAGEMENT 252

3.9 SUMMARY 253



xii CONTENTS

4 FILE SYSTEMS 263

4.1 FILES 265
4.1.1 File Naming 265
4.1.2 File Structure 267
4.1.3 File Types 268
4.1.4 File Access 269
4.1.5 File Attributes 271
4.1.6 File Operations 271
4.1.7 An Example Program Using File-System Calls 273

4.2 DIRECTORIES 276
4.2.1 Single-Level Directory Systems 276
4.2.2 Hierarchical Directory Systems 276
4.2.3 Path Names 277
4.2.4 Directory Operations 280

4.3 FILE-SYSTEM IMPLEMENTATION 281
4.3.1 File-System Layout 281
4.3.2 Implementing Files 282
4.3.3 Implementing Directories 287
4.3.4 Shared Files 290
4.3.5 Log-Structured File Systems 293
4.3.6 Journaling File Systems 294
4.3.7 Virtual File Systems 296

4.4 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 299
4.4.1 Disk-Space Management 299
4.4.2 File-System Backups 306
4.4.3 File-System Consistency 312
4.4.4 File-System Performance 314
4.4.5 Defragmenting Disks 319

4.5 EXAMPLE FILE SYSTEMS 320
4.5.1 The MS-DOS File System 320
4.5.2 The UNIX V7 File System 323
4.5.3 CD-ROM File Systems 325

4.6 RESEARCH ON FILE SYSTEMS 331

4.7 SUMMARY 332



CONTENTS xiii

5 INPUT/OUTPUT 337

5.1 PRINCIPLES OF I/O HARDWARE 337
5.1.1 I/O Devices 338
5.1.2 Device Controllers 339
5.1.3 Memory-Mapped I/O 340
5.1.4 Direct Memory Access 344
5.1.5 Interrupts Revisited 347

5.2 PRINCIPLES OF I/O SOFTWARE 351
5.2.1 Goals of the I/O Software 351
5.2.2 Programmed I/O 352
5.2.3 Interrupt-Driven I/O 354
5.2.4 I/O Using DMA 355

5.3 I/O SOFTWARE LAYERS 356
5.3.1 Interrupt Handlers 356
5.3.2 Device Drivers 357
5.3.3 Device-Independent I/O Software 361
5.3.4 User-Space I/O Software 367

5.4 DISKS 369
5.4.1 Disk Hardware 369
5.4.2 Disk Formatting 375
5.4.3 Disk Arm Scheduling Algorithms 379
5.4.4 Error Handling 382
5.4.5 Stable Storage 385

5.5 CLOCKS 388
5.5.1 Clock Hardware 388
5.5.2 Clock Software 389
5.5.3 Soft Timers 392

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 394
5.6.1 Input Software 394
5.6.2 Output Software 399

5.7 THIN CLIENTS 416

5.8 POWER MANAGEMENT 417
5.8.1 Hardware Issues 418



xiv CONTENTS

5.8.2 Operating System Issues 419
5.8.3 Application Program Issues 425

5.9 RESEARCH ON INPUT/OUTPUT 426

5.10 SUMMARY 428

6 DEADLOCKS 435

6.1 RESOURCES 436
6.1.1 Preemptable and Nonpreemptable Resources 436
6.1.2 Resource Acquisition 437

6.2 INTRODUCTION TO DEADLOCKS 438
6.2.1 Conditions for Resource Deadlocks 439
6.2.2 Deadlock Modeling 440

6.3 THE OSTRICH ALGORITHM 443

6.4 DEADLOCK DETECTION AND RECOVERY 443
6.4.1 Deadlock Detection with One Resource of Each Type 444
6.4.2 Deadlock Detection with Multiple Resources of Each Type 446
6.4.3 Recovery from Deadlock 448

6.5 DEADLOCK AV OIDANCE 450
6.5.1 Resource Trajectories 450
6.5.2 Safe and Unsafe States 452
6.5.3 The Banker’s Algorithm for a Single Resource 453
6.5.4 The Banker’s Algorithm for Multiple Resources 454

6.6 DEADLOCK PREVENTION 456
6.6.1 Attacking the Mutual-Exclusion Condition 456
6.6.2 Attacking the Hold-and-Wait Condition 456
6.6.3 Attacking the No-Preemption Condition 457
6.6.4 Attacking the Circular Wait Condition 457

6.7 OTHER ISSUES 458
6.7.1 Two-Phase Locking 458
6.7.2 Communication Deadlocks 459



CONTENTS xv

6.7.3 Livelock 461
6.7.4 Starvation 463

6.8 RESEARCH ON DEADLOCKS 464

6.9 SUMMARY 464

7 VIRTUALIZATION AND THE CLOUD 471

7.1 HISTORY 473

7.2 REQUIREMENTS FOR VIRTUALIZATION 474

7.3 TYPE 1 AND TYPE 2 HYPERVISORS 477

7.4 TECHNIQUES FOR EFFICIENT VIRTUALIZATION 478
7.4.1 Virtualizing the Unvirtualizable 479
7.4.2 The Cost of Virtualization 482

7.5 ARE HYPERVISORS MICROKERNELS DONE RIGHT? 483

7.6 MEMORY VIRTUALIZATION 486

7.7 I/O VIRTUALIZATION 490

7.8 VIRTUAL APPLIANCES 493

7.9 VIRTUAL MACHINES ON MULTICORE CPUS 494

7.10 LICENSING ISSUES 494

7.11 CLOUDS 495
7.11.1 Clouds as a Service 496
7.11.2 Virtual Machine Migration 496
7.11.3 Checkpointing 497

7.12 CASE STUDY: VMWARE 498
7.12.1 The Early History of VMware 498
7.12.2 VMware Workstation 499



xvi CONTENTS

7.12.3 Challenges in Bringing Virtualization to the x86 500
7.12.4 VMware Workstation: Solution Overview 502
7.12.5 The Evolution of VMware Workstation 511
7.12.6 ESX Server: VMware’s type 1 Hypervisor 512

7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD 514

8 MULTIPLE PROCESSOR SYSTEMS 517

8.1 MULTIPROCESSORS 520
8.1.1 Multiprocessor Hardware 520
8.1.2 Multiprocessor Operating System Types 530
8.1.3 Multiprocessor Synchronization 534
8.1.4 Multiprocessor Scheduling 539

8.2 MULTICOMPUTERS 544
8.2.1 Multicomputer Hardware 545
8.2.2 Low-Level Communication Software 550
8.2.3 User-Level Communication Software 552
8.2.4 Remote Procedure Call 556
8.2.5 Distributed Shared Memory 558
8.2.6 Multicomputer Scheduling 563
8.2.7 Load Balancing 563

8.3 DISTRIBUTED SYSTEMS 566
8.3.1 Network Hardware 568
8.3.2 Network Services and Protocols 571
8.3.3 Document-Based Middleware 576
8.3.4 File-System-Based Middleware 577
8.3.5 Object-Based Middleware 582
8.3.6 Coordination-Based Middleware 584

8.4 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 587

8.5 SUMMARY 588



CONTENTS xvii

9 SECURITY 593
9.1 THE SECURITY ENVIRONMENT 595

9.1.1 Threats 596
9.1.2 Attackers 598

9.2 OPERATING SYSTEMS SECURITY 599
9.2.1 Can We Build Secure Systems? 600
9.2.2 Trusted Computing Base 601

9.3 CONTROLLING ACCESS TO RESOURCES 602
9.3.1 Protection Domains 602
9.3.2 Access Control Lists 605
9.3.3 Capabilities 608

9.4 FORMAL MODELS OF SECURE SYSTEMS 611
9.4.1 Multilevel Security 612
9.4.2 Covert Channels 615

9.5 BASICS OF CRYPTOGRAPHY 619
9.5.1 Secret-Key Cryptography 620
9.5.2 Public-Key Cryptography 621
9.5.3 One-Way Functions 622
9.5.4 Digital Signatures 622
9.5.5 Trusted Platform Modules 624

9.6 AUTHENTICATION 626
9.6.1 Authentication Using a Physical Object 633
9.6.2 Authentication Using Biometrics 636

9.7 EXPLOITING SOFTWARE 639
9.7.1 Buffer Overflow Attacks 640
9.7.2 Format String Attacks 649
9.7.3 Dangling Pointers 652
9.7.4 Null Pointer Dereference Attacks 653
9.7.5 Integer Overflow Attacks 654
9.7.6 Command Injection Attacks 655
9.7.7 Time of Check to Time of Use Attacks 656

9.8 INSIDER ATTA CKS 657
9.8.1 Logic Bombs 657
9.8.2 Back Doors 658
9.8.3 Login Spoofing 659



xviii CONTENTS

9.9 MALWARE 660
9.9.1 Trojan Horses 662
9.9.2 Viruses 664
9.9.3 Worms 674
9.9.4 Spyware 676
9.9.5 Rootkits 680

9.10 DEFENSES 684
9.10.1 Firewalls 685
9.10.2 Antivirus and Anti-Antivirus Techniques 687
9.10.3 Code Signing 693
9.10.4 Jailing 694
9.10.5 Model-Based Intrusion Detection 695
9.10.6 Encapsulating Mobile Code 697
9.10.7 Java Security 701

9.11 RESEARCH ON SECURITY 703

9.12 SUMMARY 704

10 CASE STUDY 1: UNIX, LINUX, AND ANDROID 713

10.1 HISTORY OF UNIX AND LINUX 714
10.1.1 UNICS 714
10.1.2 PDP-11 UNIX 715
10.1.3 Portable UNIX 716
10.1.4 Berkeley UNIX 717
10.1.5 Standard UNIX 718
10.1.6 MINIX 719
10.1.7 Linux 720

10.2 OVERVIEW OF LINUX 723
10.2.1 Linux Goals 723
10.2.2 Interfaces to Linux 724
10.2.3 The Shell 725
10.2.4 Linux Utility Programs 728
10.2.5 Kernel Structure 730

10.3 PROCESSES IN LINUX 733
10.3.1 Fundamental Concepts 733
10.3.2 Process-Management System Calls in Linux 735



CONTENTS xix

10.3.3 Implementation of Processes and Threads in Linux 739
10.3.4 Scheduling in Linux 746
10.3.5 Booting Linux 751

10.4 MEMORY MANAGEMENT IN LINUX 753
10.4.1 Fundamental Concepts 753
10.4.2 Memory Management System Calls in Linux 756
10.4.3 Implementation of Memory Management in Linux 758
10.4.4 Paging in Linux 764

10.5 INPUT/OUTPUT IN LINUX 767
10.5.1 Fundamental Concepts 767
10.5.2 Networking 769
10.5.3 Input/Output System Calls in Linux 770
10.5.4 Implementation of Input/Output in Linux 771
10.5.5 Modules in Linux 774

10.6 THE LINUX FILE SYSTEM 775
10.6.1 Fundamental Concepts 775
10.6.2 File-System Calls in Linux 780
10.6.3 Implementation of the Linux File System 783
10.6.4 NFS: The Network File System 792

10.7 SECURITY IN LINUX 798
10.7.1 Fundamental Concepts 798
10.7.2 Security System Calls in Linux 800
10.7.3 Implementation of Security in Linux 801

10.8 ANDROID 802
10.8.1 Android and Google 803
10.8.2 History of Android 803
10.8.3 Design Goals 807
10.8.4 Android Architecture 809
10.8.5 Linux Extensions 810
10.8.6 Dalvik 814
10.8.7 Binder IPC 815
10.8.8 Android Applications 824
10.8.9 Intents 836
10.8.10 Application Sandboxes 837
10.8.11 Security 838
10.8.12 Process Model 844

10.9 SUMMARY 848



xx CONTENTS

11 CASE STUDY 2: WINDOWS 8 857

11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1 857
11.1.1 1980s: MS-DOS 857
11.1.2 1990s: MS-DOS-based Windows 859
11.1.3 2000s: NT-based Windows 859
11.1.4 Windows Vista 862
11.1.5 2010s: Modern Windows 863

11.2 PROGRAMMING WINDOWS 864
11.2.1 The Native NT Application Programming Interface 867
11.2.2 The Win32 Application Programming Interface 871
11.2.3 The Windows Registry 875

11.3 SYSTEM STRUCTURE 877
11.3.1 Operating System Structure 877
11.3.2 Booting Windows 893
11.3.3 Implementation of the Object Manager 894
11.3.4 Subsystems, DLLs, and User-Mode Services 905

11.4 PROCESSES AND THREADS IN WINDOWS 908
11.4.1 Fundamental Concepts 908
11.4.2 Job, Process, Thread, and Fiber Management API Calls 914
11.4.3 Implementation of Processes and Threads 919

11.5 MEMORY MANAGEMENT 927
11.5.1 Fundamental Concepts 927
11.5.2 Memory-Management System Calls 931
11.5.3 Implementation of Memory Management 932

11.6 CACHING IN WINDOWS 942

11.7 INPUT/OUTPUT IN WINDOWS 943
11.7.1 Fundamental Concepts 944
11.7.2 Input/Output API Calls 945
11.7.3 Implementation of I/O 948

11.8 THE WINDOWS NT FILE SYSTEM 952
11.8.1 Fundamental Concepts 953
11.8.2 Implementation of the NT File System 954

11.9 WINDOWS POWER MANAGEMENT 964



CONTENTS xxi

11.10 SECURITY IN WINDOWS 8 966
11.10.1 Fundamental Concepts 967
11.10.2 Security API Calls 969
11.10.3 Implementation of Security 970
11.10.4 Security Mitigations 972

11.11 SUMMARY 975

12 OPERATING SYSTEM DESIGN 981

12.1 THE NATURE OF THE DESIGN PROBLEM 982
12.1.1 Goals 982
12.1.2 Why Is It Hard to Design an Operating System? 983

12.2 INTERFACE DESIGN 985
12.2.1 Guiding Principles 985
12.2.2 Paradigms 987
12.2.3 The System-Call Interface 991

12.3 IMPLEMENTATION 993
12.3.1 System Structure 993
12.3.2 Mechanism vs. Policy 997
12.3.3 Orthogonality 998
12.3.4 Naming 999
12.3.5 Binding Time 1001
12.3.6 Static vs. Dynamic Structures 1001
12.3.7 Top-Down vs. Bottom-Up Implementation 1003
12.3.8 Synchronous vs. Asynchronous Communication 1004
12.3.9 Useful Techniques 1005

12.4 PERFORMANCE 1010
12.4.1 Why Are Operating Systems Slow? 1010
12.4.2 What Should Be Optimized? 1011
12.4.3 Space-Time Trade-offs 1012
12.4.4 Caching 1015
12.4.5 Hints 1016
12.4.6 Exploiting Locality 1016
12.4.7 Optimize the Common Case 1017



xxii CONTENTS

12.5 PROJECT MANAGEMENT 1018
12.5.1 The Mythical Man Month 1018
12.5.2 Team Structure 1019
12.5.3 The Role of Experience 1021
12.5.4 No Silver Bullet 1021

12.6 TRENDS IN OPERATING SYSTEM DESIGN 1022
12.6.1 Virtualization and the Cloud 1023
12.6.2 Manycore Chips 1023
12.6.3 Large-Address-Space Operating Systems 1024
12.6.4 Seamless Data Access 1025
12.6.5 Battery-Powered Computers 1025
12.6.6 Embedded Systems 1026

12.7 SUMMARY 1027

13 READING LIST AND BIBLIOGRAPHY 1031

13.1 SUGGESTIONS FOR FURTHER READING 1031
13.1.1 Introduction 1031
13.1.2 Processes and Threads 1032
13.1.3 Memory Management 1033
13.1.4 File Systems 1033
13.1.5 Input/Output 1034
13.1.6 Deadlocks 1035
13.1.7 Virtualization and the Cloud 1035
13.1.8 Multiple Processor Systems 1036
13.1.9 Security 1037
13.1.10 Case Study 1: UNIX, Linux, and Android 1039
13.1.11 Case Study 2: Windows 8 1040
13.1.12 Operating System Design 1040

13.2 ALPHABETICAL BIBLIOGRAPHY 1041

INDEX 1071



PREFACE

The fourth edition of this book differs from the third edition in numerous ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. The chapter on Multimedia Oper-
ating Systems has been moved to the Web, primarily to make room for new mater-
ial and keep the book from growing to a completely unmanageable size. The chap-
ter on Windows Vista has been removed completely as Vista has not been the suc-
cess Microsoft hoped for. The chapter on Symbian has also been removed, as
Symbian no longer is widely available. However, the Vista material has been re-
placed by Windows 8 and Symbian has been replaced by Android. Also, a com-
pletely new chapter, on virtualization and the cloud has been added. Here is a
chapter-by-chapter rundown of the changes.

• Chapter 1 has been heavily modified and updated in many places but
with the exception of a new section on mobile computers, no major
sections have been added or deleted.

• Chapter 2 has been updated, with older material removed and some
new material added. For example, we added the futex synchronization
primitive, and a section about how to avoid locking altogether with
Read-Copy-Update.

• Chapter 3 now has more focus on modern hardware and less emphasis
on segmentation and MULTICS.

• In Chapter 4 we removed CD-Roms, as they are no longer very com-
mon, and replaced them with more modern solutions (like flash
drives). Also, we added RAID level 6 to the section on RAID.

xxiii



xxiv PREFACE

• Chapter 5 has seen a lot of changes. Older devices like CRTs and CD-
ROMs have been removed, while new technology, such as touch
screens have been added.

• Chapter 6 is pretty much unchanged. The topic of deadlocks is fairly
stable, with few new results.

• Chapter 7 is completely new. It covers the important topics of virtu-
alization and the cloud. As a case study, a section on VMware has
been added.

• Chapter 8 is an updated version of the previous material on multiproc-
essor systems. There is more emphasis on multicore and manycore
systems now, which have become increasingly important in the past
few years. Cache consistency has become a bigger issue recently and
is covered here, now.

• Chapter 9 has been heavily revised and reorganized, with considerable
new material on exploiting code bugs, malware, and defenses against
them. Attacks such as null pointer dereferences and buffer overflows
are treated in more detail. Defense mechanisms, including canaries,
the NX bit, and address-space randomization are covered in detail
now, as are the ways attackers try to defeat them.

• Chapter 10 has undergone a major change. The material on UNIX and
Linux has been updated but the major addtion here is a new and
lengthy section on the Android operating system, which is very com-
mon on smartphones and tablets.

• Chapter 11 in the third edition was on Windows Vista. That has been
replaced by a chapter on Windows 8, specifically Windows 8.1. It
brings the treatment of Windows completely up to date.

• Chapter 12 is a revised version of Chap. 13 from the previous edition.

• Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to 223 new
works published after the third edition of this book came out.

• Chapter 7 from the previous edition has been moved to the book’s
Website to keep the size somewhat manageable).

• In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.pearsonhighered.com/tanenbaum. They include PowerPoint



PREFACE xxv

sheets, software tools for studying operating systems, lab experiments for students,
simulators, and more material for use in operating systems courses. Instructors
using this book in a course should definitely take a look. The Companion Website
for this book is also located at www.pearsonhighered.com/tanenbaum. The specif-
ic site for this book is password protected. To use the site, click on the picture of
the cover and then follow the instructions on the student access card that came with
your text to create a user account and log in. Student resources include:

• An online chapter on Multimedia Operating Systems

• Lab Experiments

• Online Exercises

• Simulation Exercises

A number of people have been involved in the fourth edition. First and fore-
most, Prof. Herbert Bos of the Vrije Universiteit in Amsterdam has been added as
a coauthor. He is a  security, UNIX, and all-around systems expert and it is great to
have him on board. He wrote much of the new material except as noted below.

Our editor, Tracy Johnson, has done a wonderful job, as usual, of herding all
the cats, putting all the pieces together, putting out fires, and keeping the project on
schedule. We were also fortunate to get our long-time production editor, Camille
Trentacoste, back. Her skills in so many areas have sav ed the day on more than a
few occasions. We are glad to have her again after an absence of several years.
Carole Snyder did a fine job coordinating the various people involved in the book.

The material in Chap. 7 on VMware (in Sec. 7.12) was written by Edouard
Bugnion of EPFL in Lausanne, Switzerland. Ed was one of the founders of the
VMware company and knows this material as well as anyone in the world. We
thank him greatly for supplying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Third Edition, which she also wrote. The Android mater-
ial in Chap. 10 was written by Dianne Hackborn of Google, one of the key dev el-
opers of the Android system. Android is the leading operating system on smart-
phones, so we are very grateful to have Dianne help us. Chap. 10 is now quite long
and detailed, but UNIX, Linux, and Android fans can learn a lot from it. It is per-
haps worth noting that the longest and most technical chapter in the book was writ-
ten by two women. We just did the easy stuff.

We hav en’t neglected Windows, however. Dav e Probert of Microsoft updated
Chap. 11 from the previous edition of the book. This time the chapter covers Win-
dows 8.1 in detail. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.



xxvi PREFACE

We were also fortunate to have sev eral reviewers who read the manuscript and
also suggested new end-of-chapter problems. These were Trudy Levine, Shivakant
Mishra, Krishna Sivalingam, and Ken Wong. Steve Armstrong did the PowerPoint
sheets for instructors teaching a course using the book.

Normally copyeditors and proofreaders don’t get acknowledgements, but Bob
Lentz (copyeditor) and Joe Ruddick (proofreader) did exceptionally thorough jobs.
Joe in particular, can spot the difference between a roman period and an italics
period from 20 meters. Nevertheless, the authors take full responsibility for any
residual errors in the book. Readers noticing any errors are requested to contact
one of the authors.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. Daniel and Matilde are great additions to our
family. Aron and Nathan are wonderful little guys and Olivia is a treasure. And of
course, I would like to thank Suzanne for her love and patience, not to mention all
the druiven, kersen, and sinaasappelsap, as well as other agricultural products.
(AST)

Most importantly, I would like to thank Marieke, Duko, and Jip. Marieke for
her love and for bearing with me all the nights I was working on this book, and
Duko and Jip for tearing me away from it and showing me there are more impor-
tant things in life. Like Minecraft. (HB)

Andrew S. Tanenbaum
Herbert Bos



ABOUT THE AUTHORS

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the
University of California at Berkeley. He is currently a Professor of Computer Sci-
ence at the Vrije Universiteit in Amsterdam, The Netherlands. He was formerly
Dean of the Advanced School for Computing and Imaging, an interuniversity grad-
uate school doing research on advanced parallel, distributed, and imaging systems.
He was also an Academy Professor of the Royal Netherlands Academy of Arts and
Sciences, which has saved him from turning into a bureaucrat. He also won a pres-
tigious European Research Council Advanced Grant.

In the past, he has done research on compilers, operating systems, networking,
and distributed systems. His main research focus now is reliable and secure oper-
ating systems. These research projects have led to over 175 refereed papers in
journals and conferences. Prof. Tanenbaum has also authored or co-authored fiv e
books, which have been translated into 20 languages, ranging from Basque to Thai.
They are used at universities all over the world. In all, there are 163 versions (lan-
guage + edition combinations) of his books.

Prof. Tanenbaum has also produced a considerable volume of software, not-
ably MINIX, a small UNIX clone. It was the direct inspiration for Linux and the
platform on which Linux was initially developed. The current version of MINIX,
called MINIX 3, is now focused on being an extremely reliable and secure operat-
ing system. Prof. Tanenbaum will consider his work done when no user has any
idea what an operating system crash is. MINIX 3 is an ongoing open-source proj-
ect to which you are invited to contribute. Go to www.minix3.org to download a
free copy of MINIX 3 and give it a try. Both x86 and ARM versions are available.

Prof. Tanenbaum’s Ph.D. students have gone on to greater glory after graduat-
ing. He is very proud of them. In this respect, he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the IEEE, and a member
of the Royal Netherlands Academy of Arts and Sciences. He has also won numer-
ous scientific prizes from ACM, IEEE, and USENIX. If you are unbearably curi-
ous about them, see his page on Wikipedia. He also has two honorary doctorates.

Herbert Bos obtained his Masters degree from Twente University and his
Ph.D. from Cambridge University Computer Laboratory in the U.K.. Since then, he
has worked extensively on dependable and efficient I/O architectures for operating
systems like Linux, but also research systems based on MINIX 3. He is currently a
professor in Systems and Network Security in the Dept. of Computer Science at
the Vrije Universiteit in Amsterdam, The Netherlands. His main research field is
system security. With his students, he works on novel ways to detect and stop at-
tacks, to analyze and reverse engineer malware, and to take down botnets (malici-
ous infrastructures that may span millions of computers). In 2011, he obtained an
ERC Starting Grant for his research on reverse engineering. Three of his students
have won the Roger Needham Award for best European Ph.D. thesis in systems.



This page intentionally left blank 



MODERN OPERATING SYSTEMS



This page intentionally left blank 



1
INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system.oo If every application pro-
grammer had to understand how all these things work in detail, no code would ever
get written. Furthermore, managing all these components and using them optimally
is an exceedingly challenging job. For this reason, computers are equipped with a
layer of software called the operating system, whose job is to provide user pro-
grams with a better, simpler, cleaner, model of the computer and to handle manag-
ing all the resources just mentioned. Operating systems are the subject of this
book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or OS X, but appearances can be deceiving. The pro-
gram that users interact with, usually called the shell when it is text based and the
GUI (Graphical User Interface)—which is pronounced ‘‘gooey’’—when it uses
icons, is actually not part of the operating system, although it uses the operating
system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system, the most fundamental piece of soft-
ware, runs in kernel mode (also called supervisor mode). In this mode it has

1




