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PREFACE

The fourth edition of this book differs from the third edition in numerous ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. The chapter on Multimedia Oper-
ating Systems has been moved to the Web, primarily to make room for new mater-
ial and keep the book from growing to a completely unmanageable size. The chap-
ter on Windows Vista has been removed completely as Vista has not been the suc-
cess Microsoft hoped for. The chapter on Symbian has also been removed, as
Symbian no longer is widely available. However, the Vista material has been re-
placed by Windows 8 and Symbian has been replaced by Android. Also, a com-
pletely new chapter, on virtualization and the cloud has been added. Here is a
chapter-by-chapter rundown of the changes.

• Chapter 1 has been heavily modified and updated in many places but
with the exception of a new section on mobile computers, no major
sections have been added or deleted.

• Chapter 2 has been updated, with older material removed and some
new material added. For example, we added the futex synchronization
primitive, and a section about how to avoid locking altogether with
Read-Copy-Update.

• Chapter 3 now has more focus on modern hardware and less emphasis
on segmentation and MULTICS.

• In Chapter 4 we removed CD-Roms, as they are no longer very com-
mon, and replaced them with more modern solutions (like flash
drives). Also, we added RAID level 6 to the section on RAID.

xxiii



xxiv PREFACE

• Chapter 5 has seen a lot of changes. Older devices like CRTs and CD-
ROMs have been removed, while new technology, such as touch
screens have been added.

• Chapter 6 is pretty much unchanged. The topic of deadlocks is fairly
stable, with few new results.

• Chapter 7 is completely new. It covers the important topics of virtu-
alization and the cloud. As a case study, a section on VMware has
been added.

• Chapter 8 is an updated version of the previous material on multiproc-
essor systems. There is more emphasis on multicore and manycore
systems now, which have become increasingly important in the past
few years. Cache consistency has become a bigger issue recently and
is covered here, now.

• Chapter 9 has been heavily revised and reorganized, with considerable
new material on exploiting code bugs, malware, and defenses against
them. Attacks such as null pointer dereferences and buffer overflows
are treated in more detail. Defense mechanisms, including canaries,
the NX bit, and address-space randomization are covered in detail
now, as are the ways attackers try to defeat them.

• Chapter 10 has undergone a major change. The material on UNIX and
Linux has been updated but the major addtion here is a new and
lengthy section on the Android operating system, which is very com-
mon on smartphones and tablets.

• Chapter 11 in the third edition was on Windows Vista. That has been
replaced by a chapter on Windows 8, specifically Windows 8.1. It
brings the treatment of Windows completely up to date.

• Chapter 12 is a revised version of Chap. 13 from the previous edition.

• Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to 223 new
works published after the third edition of this book came out.

• Chapter 7 from the previous edition has been moved to the book’s
Website to keep the size somewhat manageable).

• In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.pearsonhighered.com/tanenbaum. They include PowerPoint
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sheets, software tools for studying operating systems, lab experiments for students,
simulators, and more material for use in operating systems courses. Instructors
using this book in a course should definitely take a look. The Companion Website
for this book is also located at www.pearsonhighered.com/tanenbaum. The specif-
ic site for this book is password protected. To use the site, click on the picture of
the cover and then follow the instructions on the student access card that came with
your text to create a user account and log in. Student resources include:

• An online chapter on Multimedia Operating Systems

• Lab Experiments

• Online Exercises

• Simulation Exercises

A number of people have been involved in the fourth edition. First and fore-
most, Prof. Herbert Bos of the Vrije Universiteit in Amsterdam has been added as
a coauthor. He is a  security, UNIX, and all-around systems expert and it is great to
have him on board. He wrote much of the new material except as noted below.

Our editor, Tracy Johnson, has done a wonderful job, as usual, of herding all
the cats, putting all the pieces together, putting out fires, and keeping the project on
schedule. We were also fortunate to get our long-time production editor, Camille
Trentacoste, back. Her skills in so many areas have sav ed the day on more than a
few occasions. We are glad to have her again after an absence of several years.
Carole Snyder did a fine job coordinating the various people involved in the book.

The material in Chap. 7 on VMware (in Sec. 7.12) was written by Edouard
Bugnion of EPFL in Lausanne, Switzerland. Ed was one of the founders of the
VMware company and knows this material as well as anyone in the world. We
thank him greatly for supplying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Third Edition, which she also wrote. The Android mater-
ial in Chap. 10 was written by Dianne Hackborn of Google, one of the key dev el-
opers of the Android system. Android is the leading operating system on smart-
phones, so we are very grateful to have Dianne help us. Chap. 10 is now quite long
and detailed, but UNIX, Linux, and Android fans can learn a lot from it. It is per-
haps worth noting that the longest and most technical chapter in the book was writ-
ten by two women. We just did the easy stuff.

We hav en’t neglected Windows, however. Dav e Probert of Microsoft updated
Chap. 11 from the previous edition of the book. This time the chapter covers Win-
dows 8.1 in detail. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.
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We were also fortunate to have sev eral reviewers who read the manuscript and
also suggested new end-of-chapter problems. These were Trudy Levine, Shivakant
Mishra, Krishna Sivalingam, and Ken Wong. Steve Armstrong did the PowerPoint
sheets for instructors teaching a course using the book.

Normally copyeditors and proofreaders don’t get acknowledgements, but Bob
Lentz (copyeditor) and Joe Ruddick (proofreader) did exceptionally thorough jobs.
Joe in particular, can spot the difference between a roman period and an italics
period from 20 meters. Nevertheless, the authors take full responsibility for any
residual errors in the book. Readers noticing any errors are requested to contact
one of the authors.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. Daniel and Matilde are great additions to our
family. Aron and Nathan are wonderful little guys and Olivia is a treasure. And of
course, I would like to thank Suzanne for her love and patience, not to mention all
the druiven, kersen, and sinaasappelsap, as well as other agricultural products.
(AST)

Most importantly, I would like to thank Marieke, Duko, and Jip. Marieke for
her love and for bearing with me all the nights I was working on this book, and
Duko and Jip for tearing me away from it and showing me there are more impor-
tant things in life. Like Minecraft. (HB)

Andrew S. Tanenbaum
Herbert Bos
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1
INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system.oo If every application pro-
grammer had to understand how all these things work in detail, no code would ever
get written. Furthermore, managing all these components and using them optimally
is an exceedingly challenging job. For this reason, computers are equipped with a
layer of software called the operating system, whose job is to provide user pro-
grams with a better, simpler, cleaner, model of the computer and to handle manag-
ing all the resources just mentioned. Operating systems are the subject of this
book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or OS X, but appearances can be deceiving. The pro-
gram that users interact with, usually called the shell when it is text based and the
GUI (Graphical User Interface)—which is pronounced ‘‘gooey’’—when it uses
icons, is actually not part of the operating system, although it uses the operating
system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system, the most fundamental piece of soft-
ware, runs in kernel mode (also called supervisor mode). In this mode it has
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